Как пишется молекула в физике

Молекула

Смотреть что такое «Молекула» в других словарях:

молекула — ы, ж. molecule f. Мельчайшая частица вещества, обладающая всеми его химическим свойствами, способная существовать самостоятельно. БАС 1. Молекюль. Веселитский 26. Молекула и молекюль. Михельсон 1865. Молекюла. Так называется безконечная… … Исторический словарь галлицизмов русского языка

МОЛЕКУЛА — (новолат. molecule, уменьшит. от лат. moles масса), наименьшая ч ца в ва, обладающая его осн. хим. св вами и состоящая из атомов, соединённых между собой химическими связями. Число атомов в М. составляет от двух (Н2, О2, HF, KCl) до сотен и тысяч … Физическая энциклопедия

МОЛЕКУЛА — МОЛЕКУЛА, мельчайшая частица вещества (например, химического соединения), определяющая химические свойства этого вещества. Молекула может состоять из одного атома, но обычно состоит из двух или более атомов, удерживаемых вместе ХИМИЧЕСКИМИ… … Научно-технический энциклопедический словарь

МОЛЕКУЛА — (уменьшительная форма от лат. moles – масса) наименьшая частица химического соединения; состоит из системы атомов, с помощью химических средств может распадаться на отдельные атомы. Молекулы благородных газов, гелия и т. д. одноатомны; сложнейшие … Философская энциклопедия

молекула — эксимер, генонема, эписома, хромосома, микрочастица, макромолекула Словарь русских синонимов. молекула сущ., кол во синонимов: 10 • биомолекула (1) • … Словарь синонимов

МОЛЕКУЛА — МОЛЕКУЛА, наименьшая частица вещества, обладающая его основными химическими свойствами. Состоит из атомов, расположенных в пространстве в определенном порядке и соединенных химическими связями. Состав и расположение атомов отражены в химической… … Современная энциклопедия

МОЛЕКУЛА — (новолат. molecula уменьшит. от лат. moles масса), микрочастица, образованная из атомов и способная к самостоятельному существованию. Имеет постоянный состав входящих в нее атомных ядер и фиксированное Число электронов и обладает совокупностью… … Большой Энциклопедический словарь

МОЛЕКУЛА — МОЛЕКУЛА, молекулы, жен. (от лат. moles масса) (ест.). Мельчайшая частица вещества, способная существовать самостоятельно и обладающая всеми свойствами данного вещества. Молекулы состоят из атомов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

МОЛЕКУЛА — МОЛЕКУЛА, ы, жен. Мельчайшая частица вещества, обладающая всеми его химическими свойствами. М. состоит из атомов. | прил. молекулярный, ая, ое. Молекулярная масса. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Молекула — или частица система или группа атомов … Энциклопедия Брокгауза и Ефрона

МОЛЕКУЛА — [франц. molecule от лат. moles масса ] наименьшая частица данного вещества, обладающая его основными хим. свойствами, способная к самостоятельному существованию и состоящая из одинаковых или различных атомов, соединенных в одно целое хим. связями … Геологическая энциклопедия

Источник

Одним из основополагающих понятий современной науки является понятие молекулы. Его введение европейскими учеными в 1860 г. дало толчок к развитию не только химии и физики, но и других естественных наук.

Молекулой, в наиболее общем определении, называется частица, образованная из нескольких (двух или более) атомов, объединенных между собой ковалентными связями. Она не имеет электрического заряда, все электроны в её составе имеют пару.

Молекулы, несущие заряд, называются ионами, неспаренные электроны – радикалами. Качественный и количественный состав их стабилен. Количество ядер атомов, электронов и их взаимное расположение позволяют отличать молекулы разных веществ друг от друга.

Что такое молекула в физике

В физике этим понятием оперируют при изучении свойств разных сред (газы, жидкости) и твердых тел.

Также их свойствами объясняются явления диффузии, теплопроводности и вязкость веществ.

Что такое молекула в химии

Учение о молекулах для химической науки является одним из самых главных. Именно химические исследования дали важнейшие сведения о составе и свойствах этой мельчайшей единицы вещества.

При прохождении химического превращения молекулы обмениваются атомами, распадаются. Поэтому знания о строении и состоянии этих частиц лежат в основе изучения химии веществ и их превращений.

На основании знаний о проходящей химической реакции можно предсказать строение молекул веществ, в ней участвующих. Противоположное заключение тоже будет верным: на основании сведений о строении молекулы вещества реально предсказать его поведение во время химической реакции.

Строение молекулы

Понятие о строении включает геометрическую структуру и распределение электронной плотности.

В качестве примера рассмотрим строение наименьшей частицы воды.

Существует несколько способов взаимодействия атомов. Основным способом являются химические связи, благодаря им поддерживается стабильное существование молекул. Прочие (неосновные) взаимодействия происходят между теми атомами, которые не связаны непосредственно.

Виды химической связи:

Водородная — основана на способности атома водорода образовывать дополнительную связь при смещении от него электронной плотности.

Связи характеризуются следующими показателями:

длина – степень удаления друг от друга ядер атомов, образовавших связь;

энергия – сила, прилагаемая для разрушения связи;

полярность – смещение электронного облака к одному из атомов;

порядок или кратность – количество пар электронов, образовавших связь.

Строение молекул условно отражается структурными формулами. Основные взаимодействия атомов, при составлении таких формул, отображается черточками. В таких формулах связи образуют неразрывную цепь и иллюстрируют валентности образовавших их элементов (атомов).

Структурные формулы также отражают то, как выглядит молекула (линейная, циклическая, наличие радикалов и т. д.).

Масса (размер) молекулы

В зависимости о количества ядер атомов, входящих в их состав, можно выделить молекулы двухатомные, трехатомные и т. д.

В том случае, если количество атомов велико, молекула носит название макромолекулы.

Путем сложения масс атомов, входящих в состав частицы, можно определить молекулярную массу. В зависимости от её величины, все вещества делят на высоко- и низкомолекулярные.

Свойства молекулы

Современная наука выделяет следующие свойства молекул:

Знания о свойствах и строении молекул являются основополагающими для развития теоретических и прикладных наук и играют важную роль в жизни человека.

Читайте также:  Пропаду ненадолго как пишется

Источник

МОЛЕКУЛА

Представление о M. возникло в 18 в. и с развитием в 19 в. кинетич. теории газов и становлением термодинамики получило широкое распространение. Прямое эксперим. подтверждение существования M. провёл Ж . Перрон (J. Perrin) при изучении броуновского движения (1906).

Молекулярные вещества в газовой и жидкой фазах и в молекулярных кристаллах сохраняют индивидуальность. В расплавах и ионных кристаллах M., как правило, утрачивают индивидуальность, т. к. каждый атом в них связан с большим числом окружающих его атомов.

Такие системы неустойчивы и распадаются под внеш. воздействием.

В M. между валентными электронами в основном состоянии преобладает обменное взаимодействие, к-рое выстраивает спины электронов антипараллельно, поэтому осн. электронное состояние большинства M. синглетное, M. диамагнитна. Свободные радикалы обычно парамагнитны.

0,01 в длинах связей и

1° в валентных углах) обычно обусловлены различием колебат. поправок к структурным параметрам. Кроме того, низкосимметричные изотопич. модификации неполярных M. могут быть слабо полярными с дипольным моментом ок. 0,01 дебая.

В соответствии с симметрией равновесной конфигурации M., можно разделить на три класса: 1) M., не имеющие осей симметрии 3-го пли более высокого порядка; 2) M., имеющие одну ось симметрии 3-го или более высокого порядка; 3) M., имеющие неск. осей симметрии 3-го или более высокого порядка (см. Симметрия молекул).M. этих классов наз. асимметричными, симметричными и сферич. волчками соответственно. Линейная молекула является частным случаем симметричного волчка.

В простейшем приближении каждому нормальному колебанию M. v k сопоставляется гармонический осциллятор с энергией

Вращательные уровни энергии M. в 1 S -состоянии. Вращат. уровни M. качественно описываются в рамках модели жёсткого волчка. Вращат. энергия жёсткой (т. е. колебания её атомных ядер незначительны) двухатомной M. в 1 S-состоянии

и сплюснутые, для к-рых

Сумма К а + К с равна J (при чётном J )или J + 1 (при нечётном J). Асимметрия волчка характеризуется параметром:

Модель жёсткого волчка является грубым приближением к реальной M. Реально M. при вращении искажается, и такое центробежное искажение даёт существенный вклад в её энергию. В случае двухатомной M. основная (квартичная) центробежная поправка к (3) равна

сдвигает уровни, а вторая, зависящая от симметрии M., может приводить к снятию вырождения уровней по знаку К. Для асимметричных волчков центробежная поправка к энергии определяется только численно. Константы квартичного центробежного искажения зависят от квадратичных членов разложения потенциальной поверхности и используются для определения гармонич. силовых постоянных M. Обычно из вращат. спектров M. определяются также константы центробежных поправок более высокого порядка (секстичные, октичные и др.), к-рые содержат информацию о константах энгармонизма M.

Колебательные уровни энергии M. В гармонич. приближении энергия колебат. уровней M. определяется суммой выражений типа (1) по всем нормальным колебаниям, к-рые возбуждены в данном состоянии:

а полный электронный спин M. получается как векторная сумма спинов атомов

Модели о. а. и р. а. позволяют определить кол-во электронных уровней разл. типов симметрии, но не дают надёжных сведений относительно их энергии. Более полную информацию о расположении уровней и их устойчивости дают молекулярные орбитали.

Электронные уровни энергии расщепляются за счёт спин-орбитального взаимодействия на т. н. мультиплет-иые уровни (см. Мультиплетность). В случае нормальной связи это расщепление равно:

Обычно квадрупольное взаимодействие даёт осн. вклад в CTC, но оно имеет место только для ядер со спином l > 1 / 2 (напр., D, 14 N, Cl, Br, I). В простейшем случае одиночного квадрупольного ядра в двухатомной M. энергия квадрупольного взаимодействия описывается ф-лой

Квадрупольная CTC обычно наблюдается в спектрах высокого разрешения. Спин-вращательные и спин-спиновые взаимодействия дают небольшой вклад в CTC и имеют место для всех ядер со спином I >= 1 / 2 (I = 1 / 2 для H, F и др.). Расщепления вращат. уровней за счёт этих взаимодействий составляют обычно не более 100 кГц и наблюдаются только на уникальных установках (пучковые мазеры, электрич. резонанс в пучке и Др.). Экспeрим. данные по константам квадруполь-ной связи и спин-вращательного взаимодействия дают ценную информацию об электронном строении M., а константы спин-спиновых взаимодействий зависят только от гсом. параметров M.

Все физ. и хим. свойства M. так или иначе связаны с системой уровней энергии M. и с переходами между ними под действием внеш. возмущений.

Электрические свойства M. Молекула как система положит. и отрицат. зарядов характеризуется опре-дел. расположением зарядов, т. с. обладает электрич. дипольным, квадрупольным и т. д. моментами. Определяет электрич. свойства M. её дипольный момент m:

Магнитные свойства M. В состоянии с орбитальным моментом L электрона M. имеет орбитальный магн. момент

T. к. M z всегда относится к полносимметричному типу симметрии и [Г 2 ] всегда содержит полносимметричный тип, условие (30) фактически не ограничивает класс состояний, в к-рых H имеет диагональные элементы. T. о., расщепление уровней энергии во внеш. магн. поле (Зеемана эффект )происходит для всех M. уже в первом приближении, т. е. наличие линейного по нолю эффекта Зеемана ничем не ограничено. Величина линейного зеемановского расщепления для жёсткого асимметричного волчка даётся ф-лой:

ср. значение 2 a > определяют численно. Для симметричного волчка

а для линейной M. g J = g, т. е. не зависит от J. Обычно расщепления уровней энергии за счёт вращат. эффекта Зеемана малы и для их точного измерения используют магн. поля

Полное число M. в данном объёме пропорц. суммe величин Q n по всем состояниям M., т. е.

Величина Q наз. статистической суммой или суммой по состояниям, через неё могут быть выражены все термодинамич. ф-ции идеального газа, причём учитываются все степени свободы M., включая и её поступат. движение. Если не учитывать взаимодействие между видами внутр. движений M., то величину Q можно представить в виде произведения поступательной (Q t ), вращательной (Q r ), колебательной (Q u )и электронной (Q e )статистич. сумм:

Статистич. сумма поступат. движения M. для объёма газа V и темп-ры T равна

T. о., если известны частоты нормальных колебаний и вращат. постоянные M., то можно найти полную статистич. сумму Q, а затем вычислить термодинамич. ф-ции газа. В частности, теплоёмкость С р одного моля газа при пост. давлении определяется по ф-ле

Источник

Молекула

Особенности строения молекул определяют физические свойства вещества, состоящего из этих молекул.

Читайте также:  Как правильно пишется слово мицубиси

Содержание

История становления понятия

На международном съезде химиков в г. Карлсруе (Германия) в 1860 году были приняты определения понятий молекулы и атома. Молекула — наименьшая частица химического вещества, обладающая всеми его химическими свойствами.

Классическая теория химического строения

В классической теории химического строения молекула рассматривается как наименьшая стабильная частица вещества, обладающая всеми его химическими свойствами.

Молекула данного вещества имеет постоянный состав, то есть одинаковое количество атомов, объединённых химическими связями, при этом химическая индивидуальность молекулы определяется именно совокупностью и конфигурацией химических связей, то есть валентными взаимодействиями между входящими в её состав атомами, обеспечивающими её стабильность и основные свойства в достаточно широком диапазоне внешних условий. Невалентные взаимодействия (например, водородные связи), которые зачастую могут существенно влиять на свойства молекул и вещества, образуемого ими, в качества критерия индивидуальности молекулы не учитываются.

Центральным положением классической теории является положение о химической связи, при этом допускается наличие не только двухцентровых связей, объединяющих пары атомов, но и наличие многоцентровых (обычно трёхцентровых, иногда — четырёхцентровых) связей с «мостиковыми» атомами — как, например, мостиковых атомов водорода в боранах, природа химической связи в классической теории не рассматривается — учитываются лишь такие интегральные характеристики, как валентные углы, диэдральные углы (углы между плоскостями, образованными тройками ядер), длины связей и их энергии.

Таким образом, молекула в классической теории представляется динамической системой, в которой атомы рассматриваются как материальные точки и в которой атомы и связанные группы атомов могут совершать механические вращательные и колебательные движения относительно некоторой равновесной ядерной конфигурации, соответствующей минимуму энергии молекулы и рассматривается как система гармонических осцилляторов.

Молекула состоит из атомов, а если точнее, то из атомных ядер, окруженных определенным числом внутренних электронов, и внешних валентных электронов, образующих химические связи. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул вещества не зависят от способа его получения.

Атомы объединяются в молекуле в большинстве случаев с помощью химических связей. Как правило, такая связь образуется одной, двумя или тремя парами электронов, находящихся в совместном владении двух атомов, образуя общее электронное облако, форма которого описывается типом гибридизации. Молекула может иметь положительно и отрицательно заряженные атомы (ионы).

Состав молекулы передается химическими формулами. Эмпирическая формула устанавливается на основе атомного соотношения элементов вещества и молекулярной массы.

Геометрическая структура молекулы определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю. Если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи), при дальнейшем сближении начинают действовать электростатические силы отталкивания атомных ядер. Препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек.

Каждому атому в определенном валентном состоянии в молекуле можно приписать определенный атомный, или ковалентный радиус (в случае ионной связи — ионный радиус), который характеризует размеры электронной оболочки атома (иона) образующего химическую связь в молекуле. Размер молекулы, то есть размер её электронной оболочки, является величиной до известной степени условным. Существует вероятность (хотя и очень малая) найти электроны молекулы и на большем расстоянии от её атомного ядра. Практические размеры молекулы определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке молекул в молекулярном кристалле и в жидкости. На больших расстояниях молекулы притягиваются друг к другу, на меньших — отталкиваются. Размеры молекулы можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов. Порядок величины этих размеров может быть определен из коэффициентов диффузии, теплопроводности и вязкости газов и с плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы одного и того же или разных молекул, может быть охарактеризована средними значениями так называемых ван дер ваальсовых радиусов (Ǻ).

Радиус Ван-дер-Ваальса существенно превышает ковалентный. Зная величины ван дер ваальсовых, ковалентных и ионных радиусов, можно построить наглядные модели молекул, которые бы отражали форму и размеры их электронных оболочек.

Ковалентные химические связи в молекуле расположены под определенными углами, которые зависят от состояния гибридизации атомных орбиталей. Так, для молекул насыщенных органических соединений характерно тетраэдральное (четырехгранное) расположение связей, образуемых атомом углерода, для молекул с двойной связью (С = С) — плоское расположение атомов углерода, для молекул соединений с тройной связью (С º С) — линейное расположение связей. Таким образом, многоатомная молекула имеет определенную конфигурацию в пространстве, то есть определенную геометрию расположения связей, которая не может быть изменена без их разрыва. Молекула характеризуется той или иной симметрией расположения атомов. Если молекула не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, которые представляют собой зеркальные отражения друг друга (зеркальные антиподы, или стереоизомеры). Все важнейшие биологические функциональные вещества в живой природе существуют в форме одного определенного стереоизомера.

Молекулы, содержащие единичные связи, или сигма-связи, могут существовать в различных конформациях, возникающих при поворотах атомных групп вокруг единичных связей. Важные особенности макромолекул синтетических и биологических полимеров определяются именно их конформационными свойствами.

Квантохимическая теория химического строения

В квантохимической теории химического строения основными параметрами, определяющими индивидуальность молекулы, является её электронная и пространственная (стереохимическая) конфигурации. При этом в качестве электронной конфигурации, определяющей свойства молекулы принимается конфигурация с наинизшей энергией, то есть основное энергетическое состояние.

Представление структуры молекул

Молекулы состоят из электронов и атомных ядер, расположение последних в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула). Молекулы белков и некоторых искусственно синтезированных соединений могут содержать сотни тысяч атомов. Отдельно рассматриваются макромолекулы полимеров.

Взаимодействие атомов в молекуле

Природа химических связей в молекуле оставалась загадкой до создания квантовой механики — классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были созданы в 1927 году Гайтлером и Лондоном на примере простейшей молекулы Н2. Позже, теория и методы расчетов были значительно усовершенствованы.

Читайте также:  Пермяк писал рассказы о животных

Химические связи в молекулах подавляющего большинства органических соединений является ковалентными. Среди неорганических соединений существуют ионные и донорно-акцепторные связи, которые реализуются в результате обобществления пары электронов атома. Энергия образования молекулы из атомов во многих рядах подобных соединений приближенно аддитивна. То есть можно считать, что энергия молекулы — это сумма энергий её связей, имеющих постоянные значения в таких рядах.

Аддитивность энергии молекулы выполняется не всегда. Примером нарушения аддитивности являются плоские молекулы органических соединений с так называемыми сопряженными связями, то есть с кратными связями, которые чередуются с единичными. В таких случаях валентные электроны, определяющие кратность связей, так называемые p-электроны, становятся общими для всей системы сопряженных связей, делокализованимы. Такая делокализация электронов приводит к стабилизации молекулы. Выравнивание электронной плотности вследствие коллективизации p-электронов по связям выражается в укорочении двойных связей и удлинение одинарных. В правильном шестиугольнике межуглеродных связей бензола все связи одинаковы и имеют длину, среднюю между длиной одинарной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах.

Современная квантовомеханическая теория химических связей учитывает частичную делокализации не только p-, но и s-электронов, которая наблюдается в любых молекулах.

В подавляющем большинстве случаев суммарный спин валентных электронов в молекуле равна нулю, то есть спины электронов попарно насыщены. Молекулы, содержащие неспаренные электроны — свободные радикалы (например, атомный водород Н, метил ·CH3), обычно неустойчивы, поскольку при их реакции друг с другом происходит значительное снижение энергии вследствие образования ковалентных связей.

Межмолекулярное взаимодействие

Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами в пространстве. В зависимости от полярности молекул характер межмолекулярного взаимодействия разный. Природа последнего оставалась неясной до создания квантовой механики.

Ориентационный тип межмолекулярного взаимодействия возникает между двумя полярными молекулами, то есть, такими, которые имеют собственный дипольный момент. Взаимодействие дипольных моментов и определяет результирующую силу — притяжения или отталкивания. В случае, если дипольные моменты молекул размещаются на одной линии, взаимодействие молекул будет интенсивней.

Индукционный тип межмолекулярного взаимодействия возникает между одной полярной и одной неполярной молекулами. При этом типе взаимодействия полярная молекула поляризует неполярную молекулу так, что заряд неполярной молекулы, противоположный действующему на неё заряда полярной молекулы, смещается до последнего: в общем, положительный заряд смещается по направлению электрического поля, которое создает полярная молекула, а отрицательный — против. Это обусловливает поляризацию неполярной молекулы, то есть явления смещения связанной электронной оболочки относительно центра положительного заряда.

Дисперсионный тип межмолекулярного взаимодействия возникает между двумя неполярными молекулами. В общем, дипольные моменты неполярных молекул равны нулю, однако в определенный момент времени, есть вероятность распределения электронов по всему объёму молекулы неравномерно. Вследствие этого возникает мгновенный дипольный момент. При этом, мгновенный диполь или поляризует соседние неполярные молекулы, или взаимодействует с мгновенным диполем другой нейтральной молекулы.

Электрические и оптические свойства молекул

Поведение вещества в электрическом поле определяется основными электрическими характеристиками молекул — постоянным дипольным моментом и поляризуемостью.

Дипольный момент означает несовпадение «центров тяжести» положительных и отрицательных зарядов в молекуле (электрическую асимметрию молекулы). То есть молекулы, имеющие центр симметрии, например H2, лишены постоянного дипольного момента, и наоборот.

Поляризуемость — это способность электронной оболочки любой молекулы перемещаться под действием электрического поля, в результате чего в молекуле образуется наведенный дипольный момент. Значение дипольного момента и поляризуемости находят экспериментально с помощью измерения диэлектрической проницаемости.

Оптические свойства вещества характеризуют его поведение в переменном электрическом поле световой волны и определяются поляризуемостью молекулы этого вещества. С поляризуемостью непосредственно связаны преломление и рассеяние света, оптическая активность и другие явления, изучаемые молекулярной оптикой.

Магнитные свойства молекул

Молекулы и макромолекулы подавляющего большинства химических соединений является диамагнитными. Магнитная восприимчивость молекул (χ) для отдельных органических соединений может быть выражена как сумма значений χ для отдельных связей.

Молекулы, имеющие постоянный магнитный момент, является парамагнитными. К таковым относятся молекулы с нечетным количеством электронов на внешней оболочке (например, NO и любые свободные радикалы), молекулы, содержащие атомы с незаполненными внутренними оболочками (переходные металлы и т. д.). Магнитная восприимчивость парамагнитных веществ зависит от температуры, поскольку тепловое движение препятствует ориентации магнитных моментов в магнитном поле.

Спектры и строение молекул

Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей. Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Молекулы в химии, физике и биологии

Понятия молекулы является основным для химии, и большей частью сведений о строении и функциональность молекул наука обязана химическим исследованиям. Химия определяет строение молекул на основе химических реакций и, наоборот, на основе строения молекулы, определяет каким будет ход реакций.

Строению и свойствам молекулы определяются физические явления, которые изучаются молекулярной физикой. В физике понятия молекулы используется для объяснения свойств газов, жидкостей и твердых тел. Подвижностью молекул определяется способность вещества к диффузии, её вязкость, теплопроводность и т. д.. Первое прямое экспериментальное доказательство существования молекул было получено французским физиком Ж. Перреном в 1906 году при изучении броуновского движения.

Поскольку все живые организмы существуют на основе тонко сбалансированной химической и нехимической взаимодействия между молекулами, изучение строения и свойств молекул имеет фундаментальное значение для биологии и естествознания в целом.

Развитие биологии, химии и молекулярной физики привели к возникновению молекулярной биологии, которая исследует основные явления жизни, исходя из строения и свойств биологически функциональных молекул.

Источник

Поделиться с друзьями
admin
Детский развивающий портал