Как пишется множество в математике

Обозначение, запись и изображение числовых множеств.

Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества, то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как <3, 5, 7, …, 99>.

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N= <1, 2. 3, …>.

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на координатной прямой. Например, при решении неравенств, в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

А часто даже не указывают начало отсчета и единичный отрезок:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе изображение числовых промежутков. Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪<−10>∪[−3,1)∪ 25, 5>∪(17, +∞) :

Читайте также:  Прочитанный стих как пишется

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Источник

Множество

Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит, и не имеющее определения. Однако, можно дать описание множества, например, в формулировке Георга Кантора:

Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M).

Unter einer ‚Menge‘ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder unseres Denkens (welche die ‚Elemente‘ von M genannt werden) zu einem Ganzen.

— Георг Кантор, «К обоснованию учения о трансфинитных множествах»
(нем. «Beiträge zur Begründung der transfiniten Mengenlehre» ) [1]

Другая формулировка принадлежит Бертрану Расселлу: «Множество есть совокупность различных элементов, мыслимая как единое целое». Также возможно косвенное определение через аксиомы теории множеств.

Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.

Содержание

История теории множеств

До XIX века математиками рассматривались в основном конечные множества.

Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.

С 1872 г. по 1897 г. (главным образом в 1872—1884 гг.) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор.

В частности Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты назвал элементами множества. Множество объектов, обладающих свойством , обозначил . Если некоторое множество , то назвал характеристическим свойством множества .

Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.

Так как теория множеств фактически используется как основание и язык всех современных математических теорий в 1908 г. теория множеств была аксиоматизирована независимо Бертраном Расселем и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. В настоящее время, теорию множеств Кантора принято называть наивной теорией множеств, а вновь построенную аксиоматической теорией множеств.

Читайте также:  Как правильно пишется олесенька или олесинька

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если а — элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а ∉ А (а не принадлежит А). В отличие от мультимножества каждый элемент множества уникален, и в множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его: <6, 11>= <11, 6>= <11, 11, 6, 11, 6>.

Некоторые виды множеств и сходных объектов

Специальные множества

Сходные объекты

По иерархии

Отношения между множествами

Два множества и могут вступать друг с другом в различные отношения.

Источник

Множество

Множество [set] — одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий математик Георг Кантор. Правда, уже в начале XX в. стало ясно, что определение Кантора нельзя считать достаточно строгим, так как оно приводит к различным логическим противоречиям. Широко распространено убеждение, что «М.» — понятие, поясняемое только на примерах. Такая странная для математики ситуация объясняется отчасти тем, что все попытки определить термин «М.» приводят, по существу, к замене его другими, столь же неопределенными понятиями).

Примеры множеств: М. действительных чисел, М. лошадей в табуне, М. планов, М. функций, М. переменных задачи.

Все М., кроме пустого М., состоят из элементов. Например, каждое действительное число есть один из элементов М. действительных чисел. То, что элемент a принадлежит множеству A, обозначают с помощью специального знака aA. Это читается так: «a принадлежит множеству А в качестве элемента».

М. можно задать прямым перечислением элементов. Пусть А состоит из элементов a1, a2, a3. Это записывается так: A = <a1, a2, a3>. Если непосредственное перечисление элементов М. невозможно (например, когда М. A состоит из бесконечного числа элементов), его определяют характеристическим высказыванием, т.е. высказыванием, истинным только для элементов данного М. В таком случае употребляется запись типа:
A = <x| P(x) = И>, которая читается так: «М. A — есть М., состоящее из элементов x таких, что P(x) — истинно». Множество М всех планов x, удовлетворяющих условию, что они лучше (больше), чем план x, может быть задано с помощью высказывания: М <x| (x>x) = И> или сокращенно: M = <x| (x>x)>.

Коротко остановимся на определениях и свойствах действий над множествами.

Прежде всего, можно рассмотреть два М. — A и B, обладающих следующим свойством: все элементы М. A принадлежат и М. B. Множество A есть, таким образом, подмножество B. Это обозначается так: A ⊂ B. Предположим теперь, что даны произвольные М. A и B. Тогда из элементов этих М. можно сконструировать несколько других:

Читайте также:  Сказка 12 месяцев читать с картинками вся

Во-первых, М. элементов, принадлежащих либо A, либо B; такая операция над М. обозначается через A ∪ B и называется объединением; ясно, например, что если A B, то A ∪ B = B; кроме того, A∪ B = B A это свойство называется коммутативностью; (A B)C = A (B ∪ C) — это свойство — ассоциативность (возможность произвольного разбиения на группы);

Так же, как и объединение, операция ∩ — ассоциативна и коммутативна.

Объединение множеств называют иногда их суммой, а пересечение их — произведением.

В евклидовом n-мерном пространстве М., содержащее все свои граничные точки, — замкнутое; М., для которого существует (n-мерный) шар, целиком его содержащий, — ограниченное; ограниченное и замкнутое М. называется компактным; о выпуклом М. см. Выпуклость, вогнутость.

В разных контекстах вместо слова множество часто употребляют: область (напр. Область допустимых решений) или пространство (напр. Простртанство производственных возможностей).

См. также Венна диаграммы, Декартово произведение множеств, Нечеткое, размытое множество.

Смотреть что такое «Множество» в других словарях:

МНОЖЕСТВО — см. Класс в логике. Философский энциклопедический словарь. М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983. МНОЖЕСТВО … Философская энциклопедия

множество — См. избыток, много, обилие многое множество. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. множество избыток, много, обилие, масса, уймища, бездна, пропасть, тьма( тьмущая, тем), куча … Словарь синонимов

множество — набор комплект — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=4318] множество Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое… … Справочник технического переводчика

МНОЖЕСТВО — МНОЖЕСТВО, множества, ср. (книжн.). 1. только ед. Неопределенно большое количество, число чего нибудь. Множество рабочих. Множество фактов. «Я слышал в жизни множество отличнейших певцов.» Некрасов. 2. Совокупность элементов, выделенных в… … Толковый словарь Ушакова

МНОЖЕСТВО — МНОЖЕСТВО, множить и пр. см. многий. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

МНОЖЕСТВО — набор, совокупность, собрание к. л. объектов, называемых его элементами, обладающих общим для всех них характеристич. свойством. Понятие M. принадлежит к числу первоначальных матем. понятий и может быть пояснено только при помощи примеров. Так,… … Физическая энциклопедия

множество — МНОЖЕСТВО, изобилие, лавина, море, обилие, поток, разг. бездна, разг. вагон, разг. воз, разг. куча, разг. масса, разг. пропасть, разг. тьма, разг. уйма, разг. уймища, разг. сниж. гибель, разг. сниж. прорва, разг. сниж. сила, разг. сниж. тьма… … Словарь-тезаурус синонимов русской речи

Множество — совокупность элементов, параметров, объединенных по какому либо признаку Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

МНОЖЕСТВО — в математике, см. Множеств теория … Большой Энциклопедический словарь

МНОЖЕСТВО — МНОЖЕСТВО, а, ср. 1. Очень большое количество, число кого чего н. М. людей. М. случаев. Всяких запасов во множестве. 2. В математике: совокупность элементов, объединённых по какому н. признаку. Теория множеств. Толковый словарь Ожегова. С.И.… … Толковый словарь Ожегова

Источник

Поделиться с друзьями
Детский развивающий портал